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SUMMARY 
This paper considers the two-dimensional laminar boundary 

layer on an infinite flat plate normal to an oncoming stream, the 
plate making transverse oscillations in its own plane. The exact 
solution is shown to depend on a single ordinary differential 
equation, containing the frequency of oscillation as a parameter. 
Series methods are employed to evaluate the solution for small 
and large values of the frequency, and enough terms are calculated 
to give the solution with satisfactory accuracy over the whole 
frequency range. It is observed that the solution satisfies the full 
Navier- Stokes equations. 

For a cylinder of arbitrary section making transverse or 
rotational oscillations, it is shown how the results for a flat plate 
can be used to describe the boundary layer in the neighbourhood 
of the front stagnation point. Difficulties which arise in extending 
the solution to cover the remainder of the cylinder are discussed, 
and an estimate is made of the fluctuating torque on a circular 
cylinder making transverse oscillations. 

1. INTRODUCTION 
Attention has recently been paid to the laminar boundary layer in 

flows in which there are fluctuations superposed on a basic steady low- 
speed motion. With the two-dimensional flow about an infinite cylinder 
as the basic motion, Wuest (1952) has considered the effect of oscillations of the 
cylinder in the axial direction, and Lighthill (1954) has considered oscillations 
parallel to the oncoming stream. However, in flutter problems, rota- 
tional or transverse oscillations are of chief importance, and it is with these 
cases that this paper is concerned. From the point of view of the boundary 
layer, it is immaterial whether it is the cylinder'or the oncoming stream 
which is oscillating, as the inertial effects of an acceleration applied to the 
whole system are countered by a uniform pressure gradient, and the relative 
motion is completely unaffected. Compressibility effects will not modify 
thi; conclusion provided that the acoustic wave-length is large compared 
with the dimensions of the cylinder section. 

The results of this paper all follow from a detailed analysis of the two- 
dimensional flow against an infinite flat plate normal to the stream, the 
plate making transverse oscillations in its own plane. In $ 2  it is shown 
that for all amplitudes and frequencies of oscillation, the perturbation of 
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the flow is given by a single ordinary differential equation, containing the 
frequency as a parameter. Series expansions are obtained, valid for small 
and large frequencies, and enough terms are calculated to give the solution 
with satisfactory accuracy over the whole frequency range. Further, the 
solution satisfies not only the boundary layer equations, but also the full 
Navier-Stokes equations. 

At the lowest frequencies, the problem is identical with that of a steadily 
moving plate, and the perturbation to the boundary layer pfofile is deter- 
mined simply as the derivative of the basic profile, the well-known Hiemenz 
function. At the highest frequencies, the perturbation is a shear-layer, 
exactly as on a plate oscillating in a fluid at rest. I t  is found that the phase 
of the oscillating component of the skin-friction is always in advance of the 
velocity fluctuation, the phase-advance being proportional to the frequency 
for low frequencies, and approaching the limit tn- for high frequencies. 

This behaviour is similar to that found by Lighthill (1954) for oscil- 
lations in the magnitude of the oncoming stream. Although he had avail- 
able only the first term in each of the series for large and small frequencies, 
he was able to show that these are sufficient to cover the whole frequency 
range in that case. Stuart (1955) has considered the case of a fluctuating 
stream parallel to an infinite porous plate, and has obtained a solution 
which is valid for all frequencies. The phase-advance again has the same 
qualitative behaviour, but, as in the present case, the first terms in the low 
and high frequency approximations are not themselves sufficient to cover 
the whole frequency range. In the case of axial oscillations of a cylinder 
considered by Wuest (1952), it is well-known that the axial motion has no 
effect on the flow in planes normal to the axis, and that the axial flow satisfies 
a linear differential equation. As well as considering more general cases, 
Wuest solved numerically the equation for the flow near the stagnation 
point for one particular frequehcy. It may be noted that, for general values 
of the frequency, the solution could be found by a straightforward appli- 
cation of the methods of the present paper. It is clear that the variation of 
phase-advance with frequency is similar to that in the other cases which 
have been treated. 

In  § 3; it is shown how the results of 5 2 may be applied to the boundary 
layer near the stagnation point on a cylinder making transverse or rota- 
tional oscillations. The first obstacle to be overcome in a consideration 
of the boundary layer further downstream on the cylinder is the difficulty 
of specifying the form of 'the fluctuating component of the velocity distribution 
at the edge of the boundary layer. In the case of streamwise oscillations, 
Lighthill was able to assume that the velocity distribution outside the 
boundary layer remained unchanged in form, and he succeeded in developing 
a very satisfactory KArmAn-Pohlhausen treatment of the boundary layer 
on a cylinder of arbitrary section. In the present case, it may perhaps be 
hoped that the considerations of tj 3 will serve as a starting point for a KArmAn- 
Pohlhausen attack on the problem, and enable the solution to be continued 
away from the awkward region around the fluctuating stagnation point. 
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2. OSCILLATING PLATE 

The problem to be considered in this section is that of the two- 
dimensional flow of an incompressible fluid against an infinite plate normal 

‘to the stream. The theory will be developed for the case in which the 
plate makes harmonic oscillations in its own plane, and it will then be 
shown how the results can be immediately applied to the. case where the 
plate is fixed but the point to which the dividing streamline in the oncoming 
flow is directed oscillates. 

Take Cartesian coordinates ( x , y )  fixed in space, the x-axis being along 
the plate and the y-axis normal to it, so that x =  0 is the dividing streamline 
in the steady flow outside the boundary layer on the plate. Thus, if (u, v )  
are the corresponding components, outside the boundary layer u = U =  cx, 
where c is a constant, and so, by continuity, z, = V= - c(y - 6). The value 
of 6 will be determined in the course of the solution, and found to be constant. 
U and V are seen to be the velocity components in the two-dimensional 
potential flow against the plane y = 6. The plate is assumed to have velocity 
aeht in the x-direction, where a and w are constants. 
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The boundary layer equations are 

and 
au av -+  -=o, 
ax ay 

where v is the kinematic viscosity. 
conditions 

These are to be solved with the boundary 

u=aeimt, v=O, at y=O,  and u -+ U=cx as y + 03. (3) 

For a=O, the plate is fixed and the solution takes the classical form 
obtained by Hiemenz in which the velocity components are u=cxf’(q) ,  
z, = - (cv)’/2f(q), where q = (c/v)1/2y, a dash denotes differentiation with respect 
to q, and f satisfies the equation 

f”’ +ff” - 7 2  + 1 = 0 (4) 
with boundary conditions f(0) = 0, f’(0) = 0, f’( a) = 1. Equation (4) has 
been studied in detail by many writers. A ten-figure tabulation of f , f ’  and 
f”, performed by Dr N. E. Hoskin on the Manchester electronic computer, 
proved invaluable during the subsequent calculations of this paper. 

T o  satisfy equation (3), we look for a solution in the form 

u = cxf’(q) + aeiml+(q), ZI = - (cv)l’Y(q), (5 1 
where the me,anings off and q are unchanged. 
only, the continuity equation (2) is still satisfied. 

Since 7 is a function of y 
Equation (1) now becomes 
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The first bracket is zero, by equation (4), so both the equation and the 
boundary conditions (3) will be satisfied provided 

+“+f+’-f’+= $4; 4(0)=1, +(Co)=O. (7) 

Thus, as for a fixed plate, there is only one ordinary differential equation 
to be solved. It is to be noted that this result holds for all values of w and a, 
so there are no restrictions on the amplitude or frequency of the oscillation. 
Further, this solution, like the Hiemenz solution itself, does in fact satisfy 
the full Navier-Stokes equations and not just the boundary layer equations. 
The only term omitted in the momentum equation (1) is i3%/i3x2, which 
vanishes, and, since there is no extra contribution to v ,  the momentum 
equation in the y-direction is unaffected. 

Since f(q) N 7-0.6479 as 7 -+ co, the potential flow outside the 
boundary layer is that against the plane y = 0.6479(~/c)l~~. 

The only parameter in equation (7) is the frequency ratio w/c. Two 
series solutions will be developed, valid respectively for small and large 
values of w/c, and it will be shown that sufficient terms are here calculated 
to enable the whole frequency range to be covered satisfactorily, so far as 
the value of the skin-friction is concerned. 

Small values of w/c. 

constant value a. 
Consider first the case w = 0, which implies that the plate velocity has the 

Then, by equation (7), 4 = 40, where 

4; +f4A -f40 = 0 ; +O(O) = 1, +o( 03) = 0. (8) 

f f”+ff’”-ff”=O, (9) 

Now, differentiation of equation (4) gives 

and so +o=f” satisfies equation (8). Alsof”(O)=A = 1.2326, a value found 
by the integration of equation (4), and f”( m) = 0. Hence 

1 +,,= -jf”=O*8113f” 

satisfies both the boundary conditions. Thus, in the flow against a plate 
moving with steady velocity a, the velocity components have the simple form 

~ = ~ ~ f ’ ( q ) + 0 . 8 1 1 3 ~ f ” ( ~ ) ,  V =  - (~~)“” f (q ) .  (11) 
For small but non-zero values of w/c, write 

Consideration of the terms in (iw/c)n in equation 

4; +fK -f’+n = +w-1 ; 4 n P )  = 0, 

(7) shows that, for n 2 1, 

+,( a> = 0, (13) 
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Equation (13), like equation (8), has f" as one integral belonging to its 
complementary function. The other integral is easily found to be 

' V  g-f Q 
f"J - dq, where f O =  f dq. The method of variation of parameters then 

of "2 

leads to the solution 

where 

Further details of this solution are given in the appendix. I t  is shown that 
the boundary conditions are satisfied, and that +n tends to zero exponentially 
as q tends to infinity, for all n. 

The 
equation for d1 is 

Actually, +1 can be obtained directly in a rather simpler manner. 

1 
A 

A particular integral is seen to be +1 = - f. To this must be added suitable 

multiples of the complementary functions f" and f " I  so as to satisfy the 
boundary conditions. Equation (56) of the appendix shows that the 
required solution is 

+1=0.8113f -0.6078f"I. (16) 

This expression can also be obtained from equation (14), with the help of 
equation (9) and its derivative. 

Numerically, we shall confine our attention to the value of the skin- 
friction, equal to p(au/ay),=,. The oscillating component of the skin- 
friction T is given, from equation ( 5 ) ,  by 

The contributions to #'(O) from +o and #1 are immediately available, since 
it is known thatf"(0) = A, f"'(0) = - 1, while that from +2 require only the 

computation of lom Numerical integration yielded the value 

-0.1167, so that the first three terms of the series give 
dq. 

(18) 
d 

- #'(O) = 0-81 13 + 0.4932 + 0.0947 - . 
C 

(It is natural to consider-+'(0), since a negative value of the skin-friction 
would be expected to be associated with a positive velocity of the plate.) 



102 M. B. Glamt 

Large values of wjc. 

from 7 to 
When wjc is large, it is convenient to change the variable in equation (7) 

Y = (iw/c)1'2q = (iw/v)"%. (19) 

equation (7) becomes Write (cjiw)llz=o!; then, since - = - d d  
dq a d Y '  

+""-+=a{f"+-fp}; +@)=I,  + ( c o ) = O ,  (20) 
where a star denotes a derivative with respect to Y.  
The expansion for f(q) near q = 0 is 

For large frequency, o! is small, so we look for a solution in series by writing 
m 

+= I: a"Q),(Y), (22) 
n = O  

and equating to zero the coefficients of successive powers of 0: in equation (20). 
The boundary conditions are 

~ ~ ( 0 )  = 1, v,(O)=O (a 2 l), qn( co) = 0 (all a). (23 1 
The equation for vo is 

vt" -YO= 0, 

v,, = e-- y. 

and the required solution is 
(24) 

This is the familiar shear-wave solution due to Stokes, which gives the flow 
due to a plate oscillating in its own plane in a fluid at rest. 

The second and third equations show that pll and vz are zero. The next 
two equations are 

vf* - v3= A e -  y{ Y + i Y 2 }  (26) 

(27) and pz"-v 4- - -e-Y { T Y 2 +  1 BY3). 
m 

Now, when y = c Y  X akYk, 
k=O 

W 

- y = e- C {(K + 2)(k + 1)ak+,- 2(k+ l )a ,+ , )  Y, ,  (28) 
k = O  

so the solutions of (26) and (27) satisfying the boundary conditions (23) are 

12 (29) 
and 
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I n  the equations for q6, q7 and qs, 
there are contributions to the right-hand side from q3 and q4 as well as from 
yo. 

The function rps is identically zero. 

Making use of equation (28), we finally obtain 

3 60 
q6=A2~Y{m 33 Y+ 128 33 Y2+ - 11 Y3+ - 9 Y4+ - 3 Y5+ 

64 128 160 
129 129 43 41 103 - y+ - y2+ - y3+ - Y4f - Y5 
256 256 128 256 1920 

139 139 139 139 127 - Y +  - Y2+ - Y3+ - 
512 512 768 1536 "+ 3s4q,y5 

. lo3 y6 73 31 
40320 +- 11520 

Since 

the contribution to the skin-friction from the calculated terms is given by 

+ ""A(:>" - =(:y}, 13962 (34) 256 
since 

The variation of the real and imaginary parts of - +'(O) with frequency, 
as given by (34) for high frequencies and (18) for low frequencies, is shown 
in figure 1. The  close agreement between the two formulae in the region 
near w / c  = 1 in each case affords good evidence that the terms calculated are 
sufficient to predict a reliable value of the skin-friction over the whole 
frequency range. The  fact that the real and imaginary parts of -(b'(O) 
have the same sign indicates that, in all cases, the skin-friction is advanced 
in phase relative to the velocity fluctuation. The  variation of the phase- 
advance angle 0,, which is the argument of -(b'(O), with frequency is also 
shown in figure 1. 0, rises steadily from 0 to ~ / 4 ,  as the frequency increases. 
For small frequencies, 0, = 0.6078 w/c + 0(w3/c3), indicating a time of 
anticipation 0,!w = 0*6078/c, which is independent of frequency as long as 
w2/c2 is negligible. 

When the plate velocity is not sinusoidal, but may be expressed as a sum 
of sinusoidal components, it is clear from the form of equations (5) and (6) 
that the combined effect is the sum of the effects of the individual components. 

a = ( c / i ~ ) l / ~  = (1 - i)(c/2w)I12. 
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In  particular, if the frequencies of all the components lie in the range for 
which w2/c2 is negligible, the time of anticipation in the fluctuating com- 
ponent of the skin-friction remains as 0*6078/c. 

I I k 1 I I 
I - 0  1.5 a/= 2.0 2. s 3.a 0.s 

Figure 1 .  Oscillating plate. Variation with frequency of the real part (8) and the 
imaginary part (y) of -d’(O), and of the phase-advance angle 6,. 

Oscillating stream. 
When the dividing streamline of the oncoming stream oscillates in 

position, but the plate is at rest, the situation differs from that already con- 
sidered only by the superposition of a uniform, though not constant, trans- 
verse velocity, which has no effect on the relative motion. It follows that 
the solution obtained above can be applied at once to this new case, though 
the details require a little care. 

With coordinates as before, the velocity just outside the boundary layer is 

The stagnation streamline is thus instantaneously directed towards 
x = - (b/c)eiwf. 

Take a new origin of coordinates 0, at x = deiwf, and write x1 = x - dew as 
the new coordinate along the plate. The point 0, has velocity iwdeht, so the 
stream velocity at x, relative to the new axes, is 

The plate itself is at rest. 

U, = cx + beiwt - iudtiWt = cxI + (b  + cd - iwd)e*:. 

b + d(c - iw)  = 0. 

(36) 

(37) 

Now d must be chosen so that U, does not fluctuate ; hence 
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In  the new axes, the plate velocity is -iwdeiwt, and on writing 

a =  -iwd (38) 
we recover the case of the oscillating plate precisely as treated above. 

The velocity distribution is 

u1= cx,f ' (v)  + ae'""(7). (39) 

(40) 

On expressing x1 and a in terms of x and b, we obtain the velocity in the 
original coordinates as 

u = u1 + iwde'"t= cxf'(7) + bei"lx(q), 

where 

iw iw 

. iw 

f'--+-+ 
c c  x(v) = 

1- - 
C 

Alternatively, it may be easily shown directly from the boundary layer 
equations that x satisfies 

Equation (42) is more troublesome to consider directly than was equation (7). 
But it is easy to check that the value of x given by (41) does satisfy equation 
(42) for all values of w/c. 

The result (42) is again exact, with no restrictions as to amplitude or 
frequency. 

For small values of w/c, since 
iw w2 

+=do+ 741- 7 + 2 + . . . ,  

equation (41) gives 
x=f'+ iw -(f'-l+c#Jo)- w2 -(f'-1++0+$1)- iw3 7(f'-1++0+751++2)+...Y 

C C2 

(43) 
and for large values of w/c,  since 

+ = po + x3v3 + x4q4 + ... , 
X = (1 - ~ o )  + R2( 1 -f' -%) + a3( - p3) f E4( 1 -f' - VO - 4)4) 4- ... . (44) 

As in (17), the oscillating component of the skin-friction is given by 

The variations with frequency of the real and imaginary parts of x'(O), and 
of the phase-advance angle Ox,  are illustrated in figure 2. For small values 

of the frequency, O x =  1 - - - =0.3418 -, indicating again a constant 

time of anticipation O,/w = 0-3418/c. At higher frequencies, Bx rises 
steadily towards the limiting value &r. 

w ( A.): C 
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Thus, in each of the cases considered here, the behaviour is qualitatively 
similar to that found by Lighthill for the case in which the stream velocity 
fluctuates in magnitude. For the Hiemenz layer, which corresponds to 
the plate making oscillations in the y-direction, the time of anticipation at 
low frequency was determined as 0*18/c, considerably less than in either of 
the present cases. Lighthill’s analysis was restricted to infinitesimal 

2.5 

2.0 

0.5 

0 

Figure 2. Oscillating stream. Variation with frequency of the real part (W) and the 
imaginary part (9) of x’(O), and of the phase-advance angle 8,. 

disturbances of the steady stream. This was unavoidable, since c fluctuated 
during the motion, and hence the additional velocity had components in 
both the x and y directions. I t  may be noted that he found it possible to 
join up satisfactorily the high and low frequency formulae, although he had 
available only the first fluctuating term of the series in each case. 

Finally, a word may be said on the question of fluctuations in heat 
transfer from a heated plate. This problem was discussed in detail by 
Lighthill for his case. For the Hiemenz layer, the temperature T is a 
function of y only, satisfying 

(46) 
aT a2T 

v-==K-  T = T ,  aty=O, T + T 1  a s y - t m ,  ay a y  7 

where K is the thermal diffusivity, and To and Tl are the constant tempera- 
tures of the plate and stream. Since, for the problems of this section, the 
oscillations do not involve any change in v or in the boundary conditions, 
the steady solution of equation (46) continues to apply unchanged. In 
other words, the movement of the plate has no effect at all on the tempera- 
ture distribution and the rate of heat-transfer. 



The laminar boundary layer on oscillating plates and cylinders 

3 .  OSCILLATING CYLINDER 
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In  this section, we consider how the results of $ 2  may be applied to a 

Any two-dimensional oscillatory motion can be considered as a com- 

(i) cylinder fixed, stream oscillates in magnitude ; 
(ii) cylinder fixed, stream oscillates in direction ; 

(iii) stream constant, cylinder oscillates in the stream direction ; 
(iv) stream constant, cylinder oscillates in the transverse direction ; 
(v) stream constant, cylinder oscillates about its axis. 

cylinder of arbitrary cross-section. 

bination of the following five basic motions : 

Here, the word ‘stream’ is used to denote the fluid velocity at large 
distances from the cylinder. 

Cases (i) and (iii), which are equivalent, were analysed in detail by 
Lighthill. He assumed that the velocity U(x) outside the boundary layer 
remains unchanged in form, merely changing in scale in proportion to the 
velocity of the cylinder relative to the stream. 

In the general case, the flow outside the boundary layer differs in form 
from the corresponding steady flow, except possibly for a circular cylinder, 
and cannot be determined by boundary layer theory alone. A first approxi- 
mation, valid for low frequencies, would be to assume the external flow to 
be the quasi-steady flow, i.e. that due to a steady stream given by the in- 
stantaneous relative velocity of the cylinder and the distant fluid. Cor- 
rections due to discrepancies in the separated region at the rear of the 
cylinder might be taken into account in a second approximation. If the 
cylinder is of aerofoil section, with circulation, the question of the fluctuating 
component of circulation provides another problem. Except at small 
values of w/c,  vorticity shed at the rear will still be in the neighbourhood of 
the cylinder after a few periods, and so will have its effect on the velocity 
distribution. For, if V is a representative velocity and I a representative 
length of the cylinder, so that V= cl, it is seen that the distance travelled in 
a period is Z.rrlc/w. For small values of w/c,  the quasi-steady approximation 
would still be appropriate. For large values of w/c,  the best approximation 
would be to assume that the circulation remains constant, even though the 
Kutta-Joukowski condition is no longer satisfied. These considerations 
indicate teat Lighthill’s treatment is inadequate for an aerofoil with cir- 
culation, even if the fluctuation is confined to the magnitude of the on- 
coming stream. 

However, it is always true that the velocity over the surface near the 
stagnation point can be written as U = c ( x - x o ) ,  where c and xo have. 
fluctuating components. If these fluctuations are small, the contributions 
due to the variations of c and x,, may be added separately to the basic steady 
flow. The effect of variations in c are covered by Lighthill’s analysis, and, 
with c constant, the analysis of 5 2 becomes applicable. As discussed above, 
the value of x, may depend on other than purely quasi-steady considerations. 
We now consider the cases (ii), (iv) and (v) in turn. 
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Case (ii) calls for an immediate application of the oscillating stream 
formulae of 3 2. If the stagnation point is at x =seimt, x being measured 
round the cylinder perimeter, and if c is the velocity gradient at x = 0 in the 
undisturbed flow, then, by equation (35), the solution is given by substi- 
tuting b = - cs in equation (40). This holds whether or not the value of s is 
that given by the quasi-steady flow at the appropriate incidence. It is 
perhaps best to consider s as being found by experiment. The extra 
contribution due to any fluctuation in c is given by Lighthill’s formulae. 
It is to be noted that, to the first order in the amplitude, no such contribution 
arises in the case of a symmetrical cylinder when the flow oscillates about 
the axis of symmetry. It is likely that, for nearly circular cylinders, the 
contribution to the oscillating skin-friction deduced from equation (45) is 
indeed the major part for the whole cylinder, since over the shoulders of the 
cylinder, where all resemblance to a linear gradient has gone, the fluctuations 
in the quasi-steady external flow are much reduced. In any case, the 
boundary layer is likely to have become turbulent by this stage. 

Case (iv) might, at a first glance, be thought to require the application of 
the oscillating plate analysis of $2, but this is not so. The essential point 
is that, whereas there the axes were fixed in space, here it is natural to consider 
them as fixed in the cylinder. This is equivalent to superposing a uniform 
though fluctuating velocity on the system, which has no effect on the relative 
motion, and so case (iv) is immediately reduced to case (ii), with an oncoming 
stream as given in the new coordinate system. This procedure is identical 
with that by which case (iii) is related to case (i). 

Case (v) may also be reduced to case (ii), by choosing axes fixed in the 
cylinder. According to the boundary layer approximation, the only effect 
of rotation, as of curvature, is a small but still negligible pressure change 
across the boundary layer. The flow U(x) at the edge of the boundary 
layer will have a different value from that in the corresponding situation in 
case (ii), but may be found in suitable cases by quasi-steady considerations. 
For a circular cylinder, an alternative approach is to use fixed axes and to 
apply directly the oscillating plate analysis of § 2, the notation being suitable 
as it stands ; a more detailed study of this case, with particular attention to 
a steadily rotating cylinder, will be made in a later paper. 

As a final example, we attempt a quantitative estimate of the overall 
effects on a circular cylinder making small transverse oscillations. We 
assume that the flow at the edge of the boundary layer is quasi-steady, and 
can be written in the simple form 

where x=xo is the stagnation point and x1 is a constant. We assume that 
the fluctuation effects are negligible outside this region. Typical values 
for a cylinder of diameter d in a stream V are c= 3.6 V/d, x1 = 0.4d. If the 
transverse velocity component is /3eiwL, then, on the quasi-steady hypothesis, 

U = c ( x + x , ) ,  (x+x,l< XI, (47) 

for small values of p/V.  
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For Ix+xol < xl, the velocity in the boundary layer is given by equation 
(40) as 

u = cxf’ + cxox 

= c(x + xo)f’ + cxo(x -f’). (48) 
The first term of (48) is a contribution to the quasi-steady flow round the 
cylinder, which results in a fluctuating lift force of amplitudk /3D/ V ,  where 
D is the drag force on the cylinder, in phase with the velocity fluctuation. 
The second term of (48) involves a skin-friction given by 

and the values of this expression for all values of w are given in 5 2. Now 

~ ’ ( 0 )  - A = 0.4213 + O( g) , 
C 

and thus, for small values of w/c,  the skin-friction acting over the region 
(x+xo(  < x1 gives rise to a fluctuating torque about the cylinder axis, in 
phase with the acceleration, of amplitude per unit span T given by 

T = 0.4213 pj?wxld(v/c)1/2. (51) 
For the typical values of c and x1 given above, and for the particular values 
w = 0*5c, /3 = 0.1 V,  (51) becomes 

T=0-016(&) 1/2 pV2d2. 

Since the fluctuations in velocity for I x + xol 2 xl, assumed zero here, will 
in fact be much smaller than those for I x + xol < xl, it seems likely that (5 1) 
is indeed a reasonable estimate of the torque on the cylinder due to skin- 
friction. 
q.1 For the largest values of w/c, ~ ’ ( 0 )  - A  - ( i ~ / c ) l / ~ ,  but before this regime 
is reached the basic theory will in many practical cases have broken down, 
as the acoustic wavelength will have become comparable with the cylinder 
diameter. 

APPENDIX 
Equation (13) of 5 2 was 

b n ”  +fb,’ - f ‘ b n  = A - 1  ; #J,(O) = 0, 4,( ..) = 0 (. 2 1). (53) 
The integrals of the complementary function aref”andf”1, and it is clear 

that I = I  e f ’ l f ” 2 7  diverges as 7) -+ co. T o  investigate convergence and 

to obtain numerical coefficients, it will be necessary to consider the 
behaviour of I in some detail. 

4 

0 

The integration of equation (4) has shown that as q + CQ, 

f - 5 = 9 - 0.6479, fo N $5’ + 0.1496. 
Hence e-f” - ~e tea, 

where B = 0.8610, 
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Writing f = f + g  in equation (4), and ignoring terms in g2, we obtain 

Two differentations give g v + @ " =  0, and hence giv= Ce- )" ,  for 
some constant C. 

g"' + tg" - 2g' = 0. (54) 

Integrating, we have 

the well-known error function of which tables are available. Now g1''=f'',  
and use of the tabulated values off, together with equation (4) itself, gives 
C= 0.645 1. 

As c-+  co, f" w Ce--tt', 

Hence 

and 

Returning to equation (47), where is supposed known, we obtain a 
solution of the form 

provided that 

In view of (56), the boundary conditions on +,, require 

+,=h ,  f " + k ,  f " I ,  (57) 

I' f a  hk = - f e kl, =,fnefaq5n--l. 

-fi 

0 
h,=J h, d7, k ,=  - 

Thus +,, has the form already given in equation (14). 
It remains to be verified that +, does in fact tend to zero at infinity; 

indeed from general boundary layer experience we would expect +,, to tend 
to zero exponentially. This is the case, as is shown by the following 
induction argument. 

Suppose that for some n, +n--l=O (e-fC')  for large f ,  where 
4 = 7 - 0.6479 as before, and here and in what follows 0 (ecp") is taken to 
include O([qe-pes). Then, as a consequence of the results obtained 
above, h',= 0(1), k i  = O(e-*€*), and so by (57) and ( 5 8 ) ,  +,= O(e-tB'). 

Since do = -f" = O(e-tea), the result is true for all n by induction. 1 
A 
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